Journal of Organometallic Chemistry, 191 (1980) 27–37 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

BIS(LIGAND)METALL-KOMPLEXE VON NICKEL, PALLADIUM UND PLATIN MIT CYCLISCHEN LIGANDEN VOM DIVINYLBORAN-TYP *

G.E. HERBERICH *, M. THÖNNESSEN und D. SCHMITZ

Institut für Anorganische Chemie der Technischen Hochschule Aachen, Professor-Pirlet-Strasse 1, D-5100 Aachen (B.R.D.)

(Eingegangen den 22. Oktober 1979)

Summary

Nine complexes of type ML_2 with M = Ni, Pd, Pt and $L = X(CH=CH)_2BC_6H_5$ (X = (CH₃)₂C, (CH₃)₂Si, (CH₂)₂) are described. The X-ray structural analysis of Ni[(CH₃)₂Si(CH=CH)₂BC₆H₅]₂ and the ¹H and ¹¹B NMR spectra demonstrate a sandwich-type bis(η^5 -divinylborane)metal structure with C_2 molecular symmetry. All complexes show exceptional thermal stability as compared to the corresponding bis(1,5-cyclooctadienyl)metal complexes. In the ¹H NMR spectra internal rotation of the two ligands with respect to each other is observed for two Pd complexes and the Pt complexes at room temperature.

Zusammenfassung

Neun Komplexe des Typs ML₂ mit M = Ni, Pd, Pt und L = $X(CH=CH)_2$ -BC₆H₅ (X = (CH₃)₂C, (CH₃)₂Si, (CH₂)₂) werden beschrieben. Die Röntgenstrukturanalyse von Ni[(CH₃)₂Si(CH=CH)₂BC₆H₅]₂ und die ¹H- und ¹B-NMR-Spektren beweisen eine sandwichartige Bis(η^5 -divinylboran)metall-Struktur mit C₂-Molekülsymmetrie. Alle Komplexe zeigen im Vergleich zu den entsprechenden Bis(1,5-cyclooctadien)metall-Komplexen eine aussergewöhnliche thermische Stabilität. In den ¹H-NMR-Spektren beobachtet man bei Raumtemperatur interne Rotation der beiden Liganden gegeneinander bei zwei der Pd-Komplexe und bei den Pt-Komplexen.

Divinylboran-Derivate können als Pentahapto-Vierelektronenliganden Übergangsmetall-Komplexe bilden. Dies wurde von uns 1971 erstmals gezeigt [1] und dann ab 1977 in mehreren Arbeiten belegt [2-7]. In diesem Zusammenhang war die Frage interessant, ob die bereits früher von uns verwendeten

* Herm Professor Dr.-Ing. Helmut Behrens zu seinem 65. Geburtstag am 30. Mai 1980 gewidmet.

į

Liganden Ia [2], Ib [2,6] und Ic [8,9,2] vom Divinylboran-Typ einfache Bis-(ligand)metall-Komplexe IIa—IIc, IIIa—IIIc und IVa—IVc mit den Metallen der Nickel-Triade zu bilden vermögen.

Präparative Ergebnisse

Zwei allgemeine Verfahren wurden zur Synthese des gewünschten Bis-(ligand)metall-Komplexes eingesetzt, nämlich Ligandensubstitution an geeigneten Metall(0)-Komplexen (Methode A) und reduzierende Komplexierung (Methode B). Tabelle 1 gibt eine Übersicht hierzu.

Für die Ligandensubstitution (Methode A) eignen sich als Substrate Ni(COD)₂ (mit COD = 1,5-Cyclooctadien) [10,11], Ni(CO)₄ und Pt(COD)₂ [12-14], während sich Pd(COD)₂ [13,15] dafür wegen seiner aufwendigen Synthese und seiner Zersetzlichkeit nicht empfiehlt. Bei tieferen Temperaturen (bei Ni(COD)₂ und Pt(COD)₂ typisch bei -40 bis -25°C) bilden sich zum Teil gemischte Komplexe, die bei mässigem Erwärmen (bei Ni-Komplexen bis 90°C,

Verb. Syntheser Ausgangs	Synthesemethode Ausgangsmaterial	Analyse	gef. (ber.)	(%)	Molekül-	Schmp.	Aus-	
		С	н	в	м	(MS)	ີ (°C)	(%)
IIa	A: Ni(CO) ₄ /Ia	73.70 (73.85)	7.18 (7.15)	5.20 (5.11)	13.95 (13.89)	422	183—184 (270—275)	78
ЦР	A: Ni(CO)4/Ib A: Ni(COD)2/Ib	63.26 (63.35)	6.65 (6.65)	a	12.70 (12.90	454	195—196 (350—360)	93 - 90
IIc	A: Ni(CO)4/Ic	72.89	6.45 (6.64)	5.40 (5.48)	14.93	394	95- 96 (145-155)	73
IIIa	B:(COD)PdCl ₂ /Ia	66.62 (66.37)	6.61 (6.43)	4.72 (4.59)	22.89	b	(Zers.)	90
пв	B: (COD)PdCl ₂ /Ib	57.23	6.08	4.15	20.92	502	153-154	77
lllc	B: (COD)PdCl ₂ /Ie	65.30 (65.14)	(0.02) 6.09 (5.92)	4.78 (4.89)	(21.17) 23.72 (24.05)	442 ^c	(130 - 200) fl.	71
IVa	A: Pt(COD) ₂ /Ia	55.60 (55.84)	5.39 (5.41)	3.92	35.05	559	173-174 (Zers)	78
іvь	A: Pt(COD) ₂ /Ib	48.59 (48.74)	5.22	3.53 (3.65)	32.94 (32.98)	591	171 (240-260)	93
IVc	A: Pt(COD)2/Ic	54.49 (54.27)	5.13	4.05	36.35	531	fi.	81
v	A: Ni(COD) ₂ /Ib	66.10 (65.86)	7.51 (7.40)	a	16.31 (16.10)	364	188-189 (Zers.)	a

TABELLE 1 DARSTELLUNG DER KOMPLEXE II-V

^a Nicht bestimmt. ^b Zers. in der Ionenquelle: beobachtet wird Pd[(CH₃)₂C(CH=CH)₂BC₆H₅]⁺, m/e 288. ^c I_{rel.} 0.1%, Zers. in der Ionenquelle. bei Pd-Komplexen bis 50°C, bei Pt-Komplexen bis 80°C) in die symmetrischen Komplexe, Metall und freien Hilfsliganden zerfallen. Dies ist für die Umsetzung Ni(COD)₂/Ib in den Gl. 1 und 2 formuliert.

$$Ni(COD)_{2} + Ib \xrightarrow{-25^{\circ}C} (COD)Ni[(CH_{3})_{2}Si(CH=CH)_{2}BC_{6}H_{5}] + COD$$
(1)
(V)

$$2 V \xrightarrow{\text{so} \circ} \text{Ni}[(CH_3)_2\text{Si}(CH=CH)_2\text{BC}_6\text{H}_5]_2 + \text{Ni} + 2 \text{COD}$$
(2)
(IID)

Im allgemeinen wurden die Reaktanden bei -50°C in Toluol vereinigt und durch langsames Erwärmen zur Reaktion gebracht; schliesslich wurde erhitzt, bis die Ausgangsverbindungen und die gemischten Komplexe vollständig zersetzt waren, so dass sich die Isolierung der symmetrischen Komplexe sehr einfach gestaltete.

Für die reduzierende Komplexierung (Methode B) sind die gut zugänglichen Komplexe (COD)MCl₂ mit M = Pd [16], Pt [16,17] geeignet. Die Wahl des Reduktionsmittels war kritisch und sehr eingeschränkt, weil die Liganden I starke Lewis-Säuren sind und durch Wasser, Ethanol u.a. abgebaut werden. Wir haben mit gutem Erfolg Methylenchlorid als Solvens eingesetzt. Als Reduktionsmittel diente Co(C₅H₅)₂ in stöchiometrischer Menge; dabei sind alle Reaktanden in CH₂Cl₂ löslich. Die Reduktion lieferte naturgemäss zunächst wieder gemischte Komplexe, die beim Erwärmen mit weiterem Liganden in symmetrische Komplexe überführt werden. Dies ist für den Fall der Pd-Komplexe III in Gl. 3 und 4 formuliert.

$$(COD)PdCl_2 + I + I + 2 Co(C_5H_5)_2 \xrightarrow{-50^{\circ}C} (COD)Pd \cdot I + COD + 2[Co(C_5H_5)_2]Cl$$

$$(COD)Pd \cdot I + I \xrightarrow{50^{\circ}C} Pd \cdot 2 I + COD$$
(4)

Die Pt-Komplexe IV lassen sich in gleicher Weise aus $(COD)PtCl_2$ darstellen, jedoch gibt die Synthese aus dem gut zugänglichen $Pt(COD)_2$ nach Methode A nach unserer Erfahrung die besseren Ausbeuten.

Die neuen Komplexe, insbesondere der Sechsringliganden Ia und Ib, sind thermisch weitaus stabiler als die stabilsten bekannten reinen (Olefin)metall(0)-Komplexe von Ni [11], Pd [13] und Pt [13]. Bei gleichem Liganden nimmt die Stabilität ab in der Reihenfolge Ni > Pt > Pd, wie man es auch von den Bis-(cyclooctadien)-Komplexen dieser Metalle kennt.

Divinylboran-Liganden besitzen im Vergleich zu reinen Dien-Liganden (gleich ob 1,5-Cyclooctadien oder Butadien) ein zusätzliches, energetisch tiefliegendes, unbesetztes Ligandenorbital und damit ein stark erhöhtes Acceptor-Vermögen [2]. Daraus resultiert bei den Komplexen II, III und IV im Vergleich zu den entsprechenden Bis(cyclooctadien)metall-Komplexen eine Erhöhung der Rückbindung, der Metall-Ligand-Bindungsstärke und damit der thermischen Stabilität sowie parallel dazu eine verminderte Oxidationsempfindlichkeit.

1 (3)

Die Stabilität nimmt weiter bei gleichem Metall in der Reihenfolge der Liganden Ib > Ia > Ic ab. Da die drei Liganden elektronisch sehr ähnlich sind, müssen die Unterschiede in verschiedener Ringspannung und Flexibilität liegen; insbesondere dürften die abstossenden Wechselwirkungen zwischen den zwei CH_2 -Gruppen in Ic bei der Komplexierung zunehmen und damit destabilisierend wirken.

Die Struktur von IIb

Für die Bestimmung der Molekülstruktur durch Röntgenstrukturanalyse wurde der Ni-Komplex IIb gewählt. Hier interessierte besonders die gegenseitige Anordnung der beiden Liganden Ib im Komplex und in zweiter Linie der Vergleich mit der bereits bekannten Struktur des Tricarbonyleisen-Komplexes Ib $Fe(CO)_3$ [2].

Strukturbestimmung

Ni[(CH₃)₂Si(CH=CH)₂BC₆H₅]₂(IIb), Mol.-Masse: 455.01, tetragonal, Raumgruppe P4₃2₁2 (Nr. 96), a 1275.0(5), c 1504.4(5) pm; Z = 4, d_{rönt} 1.235(3) g cm⁻³; Absorptionskoeffizient für Mo-K_{α}-Strahlung μ 8.95 cm⁻¹.

Die Gitterkonstanten wurden durch Ausgleichsrechnung aus 50 gemessenen 2ϑ -Werten einer Guinier-Simon-Aufnahme ermittelt (α -Quarz als Standard). Es wurde ein säulenförmiger Kristall der Abmessungen $0.1 \times 0.1 \times 0.2$ mm mit monochromatisierter Mo- K_{α} -Strahlung vermessen. Im Messbereich $1 < \vartheta < 20^{\circ}$ wurden 675 symmetrieunabhängige, von Null verschiedene Reflexe gemessen. Die Messung wurde mit einem automatischen Vierkreisdiffraktometer der Firma Nonius, Delft (NL) vorgenommen. Auf eine Absorptionskorrektur konnte verzichtet werden. Die Lösung der Struktur erfolgte mit konventionellen Methoden; sämtliche Rechnungen wurden an einem pdp 11/45-Rechner der Firma DEC mit dem SPD-Programmsystem der Firma Nonius ausgeführt. Nickel besetzt die Punktlage 4a, alle anderen Atome besetzen die Punktlage 8b. Die Verfeinerung nach der Methode der kleinsten Quadrate mit voller Matrix führte zu $R_{\rm ungew.} = 0.044$ und $R_{\rm gew.} = 0.046$. Es wurden Einheitsgewichte gewählt. Alle Wasserstoffatome konnten durch Differenz-Fouriersynthesen gefunden werden; ihre Parameter wurden jedoch nicht verfeinert. Die Restelektronendichte lag am Ende der Verfeinerung zwischen -400 und +400 e nm⁻³.

Diskussion

Im Kristallgitter von IIb liegen isolierte Moleküle vor. Die Strukturparameter sind in Tabelle 2 aufgeführt. Figur 1 zeigt eine Ansicht des Moleküls.

Die Molekülsymmetrie ist C_2 ; die zweizählige Achse ist zugleich Symmetrieelement der Raumgruppe.

Die beiden 1,1-Dimethyl-4-phenyl-1-sila-4-bora-2,5-cyclohexadien-Liganden sind um 88.1° verdreht gegeneinander angeordnet. Dabei sind die Flächen C(1)-C(4) und C(1')-C(4') nahezu planparallel. Die Abweichung beträgt nur 1.3°. Die Ebenen BC₂ und SiC₂ sind um 8.5° (bei Ib · Fe(CO)₃ 9.5°) bzw. 32.9° (bei Ib · Fe(CO)₃ 41.1°) aus der C₄-Ebene wannenförmig ausgelenkt. Der an das Bor gebundene Phenylring ist um 22.5° propellerartig aus der C₄-Ebene herausgedreht. Die Metall-Ringatom-Abstände sind bindend innerhalb der Divinyl-

TABELLE 2

DIE STRUKTURPARAMETER VON Ni[(CH₃)₂Si(CH=CH)₂BC₆H₅]₂ (IIb)

Lageparameter										
	x	У		z			x	У	z	
Ni C(1)	0.0196(1) 0.	0196(1)	0.0	H(1)	0.338	0.688	0.574	
C(2)	0.438/(8) U. N O	4403(8)	0.37320	(b) H()	2) 9\	0.348	0.760	0.923	
C(2)	0.9000(9) U. N O	6004(<i>1)</i> 8680/8)	0.50660	() H(3) 4)	0.314	0.360	0.513	
C(4)	0.4419(8) 0.) 0.	3532(8)	0.1885(6) H(=) 5)	0.052	0.721	0.392	
C(6)	0.1046(1	1) 0.	7127(10)	0.3488(9) H(6)	0.434	0.160	0.399	
C(7)	0.9733(9) 0.	2252(8)	0.3966	6) H(7)	0.205	0.081	0.971	
C(8)	0.4283(8) 0.	7748(9)	0.3472	7) H(B)	0.950	0.167	0.128	
C(9)	0.1526(9) 0.	6051(9)	0.0907	8) H(9)	0.117	0.260	0.459	
C(10)	0.0401(8) 0.	3755(9)	0.2728(7) H(LO)	0.112	0.649	0.119	
C(11)	0.4458(9) 0.	1698(9)	0.9870(8) H(11)	0.073	0.425	0.243	
C(12)	0.2438(9) 0.	4106(9)	0.0753(7) H(12)	0.372	0.146	0.051	
C(13)	0.1999(1	0) 0.	1141(10)	0.1839(8) H(13)	0.293	0.377	0.054	
Si	0.1876(2) 0.	9943(3)	0.1177(2) H(14)	0.344	0.527	0.311	
B	0.3567(1	0) 0.	4329(9)	0.2153(7) H(15)	0.454	0.493	0.420	
Anisotrop	e Temper	aturfakt	oren a							
Atom	B ₁₁	B22	B33	B ₁₂	B ₁₃		B ₂₃			
Ni	3.5(1)	3.5(1)	2.8(1)	-0.3(1)	0.3(1)		0.3(1)			
Si	4.8(1)	5.1(2)	4.2(1)	-0.8(2)	-1.6(1)		0.1(1)			
C(1)	4.9(5)	4.6(5)	2.3(3)	0.2(3)	1.4(4)		0.4(4)			
C(2)	5.1(5)	3.5(4)	5.6(5)	-0.9(4)	1.7(6)	~	-0.6(4)			
	3.3(4)	3.6(4)	4.6(5)	-0.6(4)	0.6(5)		0.4(5)			
C(4) R	5.3(5) 4.2(7)	2.7(4) 3.0(5)	2.7(4)	-0.4(5)	-0.8(4)		0.4(4)			
C(6)	7 4(8)	6 1 (7)	89(8)	0.3(6)	0.4(9)	_	-0.4(6)			
C(7)	3 4(4)	4.0(5)	4 2(5)	0.5(4)	0.3(4)	_	-0.4(0)			
C(8)	3.6(5)	4.3(5)	4.6(5)	-0.1(7)	-0.6(4)	_	-0.1(6)			
C(9)	5.4(6)	4.2(5)	6.5(6)	1.1(5)	-0.4(5)	_	-0.7(6)			
C(10)	4.0(6)	5.7(6)	6.1(6)	0.3(5)	1.1(5)		2.0(5)			
C(11)	5.3(6)	5.2(6)	6.3(6)	0.8(5)			0.8(6)			
C(12)	4.5(6)	5.2(6)	3.6(5)	0.3(5)	-0.3(5)		0.8(5)			
C(13)	8.1(?)	7.0(7)	5.3(6)		-0.8(6)		-2.0(6)			
Abstände	(pm)		Winkel (°)		v	Vinkel zwis	chen Eber	en	
NI-P	999 1	(5)	C(1)_Si_		06 8(4)			C19.		
NI-B Ni-Si	279 6	(5)	C(1) = Si =	-C(2) -C(6)	90.0(4) 111.0(5)	r	h = C(1)	C(2) C(3)	C(A)	
Ni-C(1)	217(1)	C(1) - Si -	-C(13)	112.0(3)	s	$3iC_2 = Si C$	C(2), C(3), C(3)	0(4),	
Ni-C(2)	219(1	ý	C(2)-Si-	-C(6)	109.7(5)	P	$BC_2 = B_1C_2$	(3) C(4)		
Ni-C(3)	213(1	Ś	C(2)_Si-	-C(13)	115.6(5)	· ī	C_{A}/BC_{2} 8.5	°		
Ni-C(4)	211(1)	C(6)-Si-	-C(13)	111.0(5)	C	Ja/SiCo 32	.9°		
Si-C(1)	185(1)	C(3)-B-	C(4)	116.0(5)	P	h/C₄ 22.5	5		
SiC(2)	189(1)	C(3)-B	C(7)	122.5(4)		• • •			
Si-C(6)	186(1)	C(4)—B—	C(7)	120.9(5)					
SiC(13)	183(1)	C(8)-C(7	')C(12)	115.7(4)					
BC(3)	156(1)	C(7)-C(8	s)—C(9)	121.9(4)					
BC(4)	154(1)	C(8)-C(9)C(10)	119.8(5)					
B-C(7)	156(1)	C(9)-C(1	.0)-C(11)	120.9(5)					
C(1)C(2) 280(1)	C(10)C	(11)C(12)) 120.1(4)					
C(3)-C(4) 263(1))	C(11)C(12)C(7)	121.4(5)		,			
C(1)-C(3) 100(1)								
C(2)-C(4) 136(1) 141/1) \								
C(7)-C(8	7 14071 7 14071	,								
C(2)_C(1)	4) 140(1) 190/1	, \								
C(9)C(3)	/ 196(1) () 196(1)	ζ.								
C(10)-C(11) 134(1)	Ś								
C(11)-C(12) 140(1)	,)								

^a Die Temperaturparameter B_{ij} sind wie folgt definiert: $T = \exp[-1/4(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^{*}b^{*} + 2B_{13}hla^{*}c^{*} + 2B_{23}klb^{*}c^{*})]; B_{ij}$ in 10⁴ pm².

Verbindung	C ₆ H ₅ -Gruppe	Vinylen-Protone	u	3J(AB)		Solvens	Temperatur /°C)	Frequenz (Hz)
		A,	B,	(711)				
IIa	1.91m (4H) 2.59m (6H)	4.31 dd (2H) 5.69dd (2H)	4,49dd (2H) 5,89dd (2H)	9.7 ^b endo: exo:	9.148 (6H) 9.40s (6H)	C ₆ D ₆	R.T.	100
IIb	1.90m (4H) 2.58m (6H)	3.49dd (2H) 4.39dd (2H)	4.82dd (2H) 5.86dd (2H)	14.2 ^c endo: exo:1	9.76s (6H) 10.13s (6H)	C ₆ D ₆	R.T.	270
IIc	1.87m (4H) 2.59m (6H)	4.04m (2H) 5.18d (2H)	4.65d7(2H) 5.36m (2H)	11.2 endo: exo:	8.57m (4H) 8.65m (4H)	C ₆ D ₆	в.т.	100
IIIa	2.28m (4H) 2.66m (6H)	3.67d (2H) 4.90d (2H)	4.28d (2H) 5.28d (2H)	9.6 endo: exo:	8.77s (6H) 9.10s (6H)	CDCl ₃	-55	270
qIII	1.98m (4H) 2.65m (6H)	3.39dd (2H) 4.08dd (2H)	4,45dd (2H) 5,33dd (2H)	15.3 ^d endo: exo:	9.91s (6H) 10.15s (6H)	C ₆ D ₆	R.T.	100
IIIc	2.26m (4H) 2.73m (6H)	3.57m (2H) 4.77m (2H)	4.50d (2H) 4.91d (2H)	10.2 endo: exo:	7.88m (4H) 8.10m (4H)	CDCI ₃	66	270
IVa	2.06m (4H) 2.58m (6H)	4.62dd (2H) 5.60dd (2H)	4.98dd (2H) 6.20dd (2H)	8,8 ^c endo: exo:	8.83s (6H) 9.07s (6H)	C ₆ D ₅ CD ₃	-46	100
IVb	2.33m (4H) 2.74m (6H)	4.05dd (2H) 5.11dd (2H)	5.16dd (2H) 6.43dd (2H)	13.0 ^f endo: exo:	9.70s (6H) 10.26s (6H)	CD ₃ COCD ₃ / CD ₂ Cl ₂	42	270
IVc	2.38m (4H) 2.78m (6H)	4.23m (2H) 6.25d (2H)	4.68d (2H) 5.42m (2H)	10.0 endo: exo:	7.79m (4H) 8.16m (4H)	CDCl ₃	55	270
^a 7-Werte, ^b Wei 32.2, ² J(¹⁹⁵ Pt-	tere Auspaltung von -B) 38.8, ² J(1 ⁹⁵ Pt/	1.8 Hz. ^c Weitere / A') 34.9, ² J(¹⁹⁵ Pt	Aufspaltung von 2.2 —B') 33.6 Hz. ^f Wel	Hz, ^d Weitere / tere Aufspaltun	ufspaltung von g von 1.9 Hz; ² J	1.9 Hz. ^e Weltere (¹⁹⁵ Pt-A, A', B,	Aufspaltung von 1.3 B') ≈ 27 Hz.	Hz; ² J(¹⁹⁵ Pt-A)

TABELLE 3 ¹ H-NMR-SPEKTREN DER KOMPLEXE II—IV ^a

32

Fig. 1. Die Molekülstruktur von Ni[(CH₃)₂Si(CH=CH)₂BC₆H₅]₂ (IIb).

boran-Gruppierung, während zwischen Ni und Si keine Wechselwirkung beobachtbar ist. Der von den Ringatomen am Silicium aufgespannte Winkel C(1)-Si-C(2) ist mit 97° sehr klein (bei Ib · Fe(CO)₃ 95°). Innerhalb des Phenyl-Rings ist eine deutliche Störung der hexagonalen Geometrie erkennbar, wie z.B. auch an Triphenylboran, B(C₆H₅)₃, beobachtet [18]. Als wesentliches Ergebnis ist also festzuhalten:

1. Die Struktur ist als Bis(η^{s} -ligand)metall-Struktur zu beschreiben. Die Ligandengeometrie ist im wesentlichen die gleiche wie in Ib · Fe(CO)₃ [2].

2. Die Orientierung der beiden Liganden gegeneinander ist praktisch die gleiche wie in Ni(COD)₂ [19] und Ni[FBC₄(CH₃)₄BF]₂ [20], obwohl IIb geringere Symmetrie besitzt.

Spektren *

Die ¹H-NMR-Spektren der Komplexe II, III und IV (Tabelle 3) zeigen das für eine C_2 -Molekülsymmetrie erwartete Bild. Figur 2 zeigt ein Tieftemperaturspektrum von IVc als Beispiel.

Man beobachtet in allen Fällen bei hinreichend tiefer Temperatur für die vier

^{*} Für weitere spektroskopische Daten (13-C-NMR, IR, MS) siehe Ref. 21.

Fig. 2. ¹H-NMR-Spektrum von $Pt[(CH_2)_2BC_6H_5]_2$ bei 270 MHz und $-55^{\circ}C$ in $CDCl_3$.

Vinylen-Protonen vier getrennte Signale, die sich mithilfe von Doppelresonanzexperimenten und aufgrund der Intensitäten ihrer Hyperfeinkomponenten in zwei AB-Teilspektren, AB und A'B', gruppieren lassen. Die magnetische Anisotropie des Gegenliganden verursacht eine beträchtliche chemische Verschiebungsdifferenz zwischen den beiden AB-Teilspektren; dabei liegt es nahe, das bei höherem Feld erscheinende AB-Teilspektrum derjenigen Vinylen-Gruppe zuzuordnen, die sich der Phenyl-Gruppe des Gegenliganden gegenüber befindet. Die weitere Zuordnung ist bei den Komplexen der c-Reihe aufgrund der zusätzlichen Kopplungen mit den Methylen-Gruppen der Brücke X eindeutig, bleibt jedoch bei den Komplexen der a- und b-Reihe offen; diese Problematik ist bei früher beschriebenen Komplexen der Liganden I bereits diskutiert worden [2,3].

Bei Raumtemperatur zeigen die Pt-Komplexe IV für die Vinylen-Protonen breite Signale, während bei den Pd-Komplexen IIa und IIc bereits der Hochtemperaturgrenzfall mit nur noch einem AB-Teilspektrum für beide Vinylen-Gruppen bebbachtet wird. Der Ni-Komplex IIb zeigt auch bei Messtemperaturen bis 90°C keine Signalverbreiterung.

Die Temperaturabhängigkeit des ¹H-NMR-Spektrums wurde bei IVb genauer untersucht. Die Signale der Vinylenprotonen beginnen sich oberhalb von -10° C zu verbreitern. Bei 20°C ist die Koaleszenztemperatur für H_A und H_A' erreicht, bei 25°C die für H_B und H_B'; bei 70°C ist die Hyperfeinstruktur (³J(AB), ²J(¹⁹⁵Pt-H)) wieder scharf. Im ganzen Temperaturintervall bleiben die Signale der *exo*- und *endo*-CH₃-Gruppen scharf. Nach diesen Befunden liegt eine interne Rotation der beiden Liganden gegeneinander vor, die man sich nach Art einer Tetraeder-Quadrat-Tetraeder-Umlagerung vorstellen kann. Nach grober Schätzung ist ΔG^{\dagger} (295 K) 14 kcal/mol.

Die ¹¹B-NMR-Spektren (Tabelle 4) zeigen die Metall—Bor-Wechselwirkung durch Hochfeldverschiebungen von 26.3—34.2 ppm an. Bei den Komplexen der c-Reihe ist, wie schon früher bemerkt [3], die Bindung vom Metall zum Bor signifikant schwächer, was sich präparativ in der geringeren thermischen Beständigkeit dieser Komplexe ausgedrückt.

B-NMR-SPEKTREN								
δ(ppm) ^{<i>a</i>}	Solvens	Δδ (ppm) ^b						
53.7	C ₆ D ₆							
52,7	C ₆ D ₆							
54.6	-							
25.3	$C_6 D_6$	28.4						
24.7	C ₆ D ₆	28.0						
28.3	C_6D_6	26.3						
20.6	CDCl ₃	33.1						
21.8	C ₆ D ₆	30.9						
28.0	CDCl ₃	26.6						
19.5	CDCl ₃	34.2						
21.4	C ₆ D ₅ CD ₃	31.3						
27.0	CDCl ₃	27.6						
21,8	C ₆ D ₆	30.9						
	$\frac{\delta(ppm)^{a}}{53.7}$ 52.7 52.7 54.6 25.3 24.7 28.3 20.6 21.8 28.0 19.5 21.4 27.0 21.8	$\delta(ppm)^a$ Solvens 53.7 C_6D_6 52.7 C_6D_6 54.6 - 25.3 C_6D_6 24.7 C_6D_6 28.3 C_6D_6 20.6 CDCl_3 21.8 C_6D_6 28.0 CDCl_3 19.5 CDCl_3 21.4 $C_6D_5CD_3$ 27.0 CDCl_3 21.8 C_6D_6	TREN $\delta(ppm)^d$ Solvens $\Delta \delta(ppm)^b$ 53.7 C_6D_6 52.7 C_6D_6 54.6 - 25.3 C_6D_6 28.3 C_6D_6 28.3 C_6D_6 28.0 CDCl ₃ 28.0 CDCl ₃ 28.0 CDCl ₃ 21.4 $C_6D_5CD_3$ 21.8 C_6D_6 30.9					

TABELLE 4

^a Gemessen gegen externes BF₃ · OEt₂. ^b Hochfeldverschiebung durch Komplexierung.

Insgesamt zeigen die spektroskopischen Daten, dass in allen hier beschriebenen Bis(ligand)metall-Komplexen die am Beispiel IIb röntgenographisch belegte Bis(η^{5} -ligand)metall-Struktur mit C_{2} -Symmetrie vorliegt.

Experimenteller Teil

Alle Versuche wurden unter Ausschluss von Sauerstoff und Wasser unter Stickstoff als Schutzgas durchgeführt.

1. Bis(ligand)nickel-Komplexe II aus Ni(CO)₄/I. Zu 20 ml Toluol gibt man 1.2 g (7 mmol) Ni(CO)₄ und 2 mmol Ligand I. Unter Verwendung eines Intensivkühlers (—15°C) und unter Rühren erwärmt man langsam bis 90°C Badtemperatur und hält 3 h bei dieser Temperatur. Abziehen alles Flüchtigen im Vakuum und Chromatographie des Rückstands an Al₂O₃ (7% H₂O) mit Pentan liefert ein gelbes bis orangefarbenes Eluat, aus dem durch Einengen und langsames Abkühlen bis —78°C das Produkt II auskristallisiert.

IIa: orangegelbe Nadeln, in festem Zustand praktisch luftbeständig.

IIb: orangefarbene Kristalle, im festem Zustand luftbeständig; Sublimation bei 140° C/10⁻⁶ bar.

IIc: orangefarbene Kristalle, in festem Zustand wenig luftempfindlich.

2. Bis(1, 1-dimethyl-4-phenyl-1-sila-4-bora-2, 5-cyclohexadien)nickel (IIb) aus $Ni(COD)_2/Ib$. Zu 20 ml Toluol gibt man bei -50° C unter Rühren 0.50 g (1.82 mmol) Ni(COD)_2 [10] und 0.73 g (3.69 mmol) Ib [2,6], lässt die Temperatur unter Rühren langsam auf Raumtemperatur ansteigen und erhitzt schliesslich 17 h auf 70°C. Abziehen des Solvens im Vakuum und Chromatographie des Rückstandes an Al₂O₃ (7% H₂O) mit Pentan liefert ein gelbes Eluat, aus dem durch Einengen und langsames Abkühlen bis -78° C 750 mg (1.65 mmol, 90%) orangefarbene Kristalle von IIb gewonnen werden.

3. (1,5-Cyclooctadien)(1,1-dimethyl-4-phenyl-1-sila-4-bora-2,5-cyclohexadien)nickel (V). Zu 40 ml Toluol gab man bei -50° C 1.00 g (3.64 mmol) Ni(COD)₂ [10] und 0.72 g (3.64 mmol) Ib [2,6] und liess die Temperatur unter Rühren in 2 h auf Raumtemperatur ansteigen. Man filtrierte unter Nachwaschen mit Pentan durch eine 10 cm-Schicht von Al₂O₃ (sauer, 5% H₂O) und zog das Lösungsmittel ab. Der Rückstand (V/IIb $\approx 1/1$) wurde 6 d bei 80° C/ 10⁻⁶ bar der Sublimation unterworfen. Das Sublimat (V/IIb $\approx 20/1$) wurde an Al₂O₃ (sauer, 5% H₂O; Säule: 1.2 m lang, 30 mm weit) mit Pentan chromatographiert. Die ersten Fraktionen des Eluats enthielten reines V, welches durch Einengen und Kühlen bis -78°C als orangefarbenes Kristallisat erhalten wurde.

¹H-NMR (τ -Werte, C₆D₆, 270 MHz, R.T.): C₆H₅-Gruppe: 1.81 m(2H), 2.61 m(3H); Vinylen-Gruppe: 3.57 d(3- + 5-H), 5.14 d(2- + 6-H), ³J₂₃ 14.8 Hz, Zuordnung wie in Ref. 2; COD: 4.81 m(2H), 6.20 m(2H), 8.22 m(8H). MS (70 eV): m/e ($I_{rel.}$ (%); Zuordnung) 364 (45; M^+), 256 (34; $M^+ - C_8H_{12}$), 166 (100; NiC₈H₁₂⁻), 112 (86; NiC₄H₆⁻).

4. Bis(ligand)palladium-Komplexe III. Zu einer Suspension von 0.58 g (2.00 mmol) (COD)PdCl₂ [16] in 3 ml COD gibt man 4.2 mmol Ligand I und tropft unter Rühren bei -50° C 0.79 g (4.2 mmol) Co(C₅H₅)₂ [22] in 50 ml CH₂Cl₂ in 1 h zu. Dann lässt man die Temperatur in 2 h auf Raumtemperatur steigen, zieht das CH₂Cl₂ im Vakuum vorsichtig ab und erwärmt nach dem Zufügen von 10 ml Toluol noch 4 h auf 50° C. Danach wird die Reaktionslösung bei IIIa und IIIb durch wenig Al₂O₃ (7% H₂O; Kühlung auf -78° C) filtriert; Abziehen des Solvens und Kristallisation aus Pentan liefert das Produkt. Bei IIIc wird statt Al₂O₃ SiO₂ (6% H₂O) verwendet; Abziehen des Solvens, Chromatographie an SiO₂ (6% H₂O; Kühlung auf -30° C) mit Pentan/Diethylether (98/2) und Abziehen des Eluens im Vakuum liefert IIIc.

IIIa: orangegelbe Kristalle, auch in festem Zustand luftempfindlich.

IIIb: gelbe Nadeln, in festem Zustand mässig luftempfindlich.

IIIc: bei tiefer Temperatur Feststoff, nicht kristallin, bei Raumtemperatur zähes orangegelbes Öl, luftempfindlich.

5. Bis(ligand)platin-Komplexe IV. Zu einer Suspension von 0.82 g (2.00 mmol) Pt(COD)₂ [13,14] in 15 ml Toluol von -50° C gibt man 4.2 mmol Ligand I. Man lässt die Temperatur unter Rühren in 2 h auf Raumtemperatur steigen und erhitzt dann 5 h auf 80°C. Danach wird das Solvens im Vakuum abgezogen. Bei IVa und IVb wird der Rückstand in Pentan aufgenommen und die Lösung durch wenig Al₂O₃ (7% H₂O; Kühlung auf -78° C) filtriert; Einengen und Kristallisation durch langsames Abkühlen bis -78° C liefert das Produkt. Bei IVc erhält man das Produkt durch Chromatographie an SiO₂ (6% H₂O; Kühlung auf -30° C) mit Pentan/Diethylether (98/2) und Abziehen des Eluens im Vakuum.

IVa: gelbe Nadeln, in festem Zustand praktisch luftbeständig; Sublimation bei 120° C/ 10^{-6} bar.

IVb: zitronengelbe Kristalle, in festem Zustand praktisch luftbeständig; Sublimation bei 150° C/ 10^{-6} bar.

IVc: bei tiefer Temperatur Feststoff, nicht kristallin, bei Raumtemperatur zähes gelbes Öl, luftempfindlich.

Dank

Diese Arbeit wurde durch die Deutsche Forschungsgemeinschaft und den Fonds der Chemischen Industrie grosszügig gefördert.

Literatur

- 1 G.E. Herberich und H. Müller, Angew. Chem., 83 (1971) 1020; Angew. Chem. Int. Ed. Engl., 10 (1971) 937.
- 2 G.E. Herberich, E. Bauer, J. Hengesbach, U. Koelle, G. Huttner und H. Lorenz, Chem. Ber., 110 (1977) 760.
- 3 U. Koelle, W.-D.H. Beiersdorf und G.E. Herberich, J. Organometal. Chem., 152 (1978) 7.
- 4 G.E. Herberich, W. Koch und H. Lueken, J. Organometal. Chem., 160 (1978) 17.
- 5 G.E. Herberich, C. Engelke und W. Pahlmann, Chem. Ber., 112 (1979) 607.
- 6 G.E. Herberich und M. Thönnessen, J. Organometal. Chem., 177 (1979) 357.
- 7 G.E. Herberich, E.A. Mintz und H. Müller, J. Organometal. Chem., 187 (1980) 17.
- 8 D. Sheehan, Diss. Abstr., 25 (1965) 4417.
- 9 A.J. Leusink, W. Drenth, J.G. Noltes und G.J.M. van der Kerk, Tetrahedron Lett., (1967) 1263.
- 10 B. Bogdanović, M. Kröner und G. Wilke, Justus Liebigs Ann. Chem., 699 (1966) 1.
- 11 P.W. Jolly und G. Wilke, The Organic Chemistry of Nickel, Vol. I, Academic Press, New York, 1974.
- 12 J. Müller und P. Göser, Angew. Chem., 79 (1967) 380; Angew. Chem. Int. Ed. Engl., 6 (1967) 364.
- 13 M. Green, J.A.K. Howard, J.L. Spencer und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1977) 271.
- 14 G.E. Herberich und B. Hessner, Z. Naturforsch. B, 34 (1979) 638.
- 15 R.M. Atkins, R. McKenzie, P.L. Timms und T.W. Turney, J. Chem. Soc. Chem. Commun., (1975) 764.
- 16 J. Chatt, L.M. Vallarino und L.M. Venanzi, J. Chem. Soc., (1957) 3413.
- 17 H.C. Clark und L.E. Manzer, J. Organometal. Chem., 59 (1973) 411.
- 18 F. Zettler, H.D. Hansen und H. Hess, J. Organometal. Chem., 72 (1974) 157.
- 19 H. Dierks und H. Dietrich, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 122 (1965) 1.
- 20 P.S. Maddren, A. Modinos, P.L. Timms und P. Woodward, J. Chem. Soc. Dalton Trans., (1975) 1272.
- 21 M. Thönnessen, Dissertation, Techn. Hochschule Aachen, 1978.
- 22 C.F. Cordes, Chem. Ber., 95 (1962) 3084.